

### Low Carbon Ukraine

Policy advice on low-carbon policies for Ukraine

Policy Briefing #2

Supported by:



Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the German Bundestag

# Location selection and wind-solar mix

#### Dr. Georg Zachmann and Dr. Frank Meissner

Berlin / Kyiv, November 2018

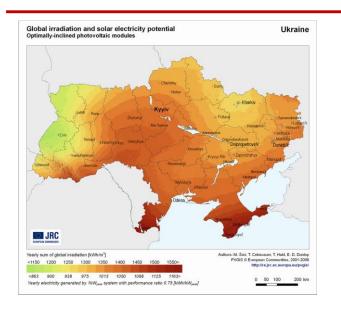


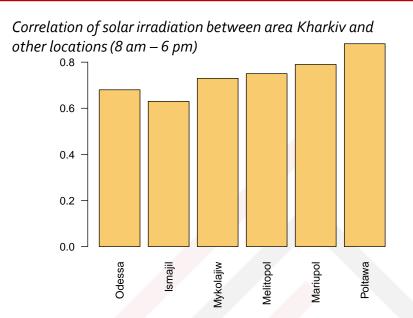
### Key messages

- Wind and solar installations should be distributed over the country, and not only concentrated in the most sunny/windy locations
- Policy should strive for an optimal mix of wind and solar installations in order to reduce system cost



### 1. Optimal location selection

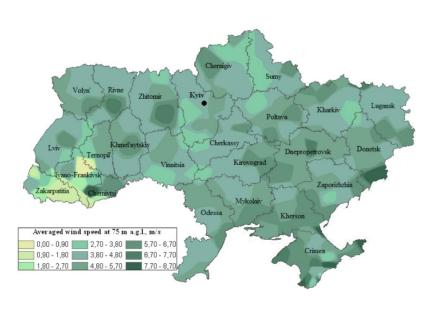

- Wind and solar power yields depend on fluctuating weather conditions
- Weather conditions solar irradiation and wind differ between regions
- Wind and solar day profiles typically differ



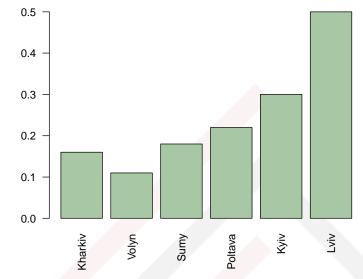

An optimal location selection enables a balancing within wind and solar generation across regions



### 1.1 Regional distribution of solar irradiation







- Solar irradiation ranges between < 1.100 and >1.500 kW/m2
- Highest solar potential in south of Ukraine
- High correlations between regions range o.6 o.9 (8 am 6 pm)
- High correlation hinder balancing between regional fluctuation PVsolar power generation



### 1.2 Regional distribution of wind speed



Correlation of wind speed between area Zakarpattia Oblast and other locations



- Average wind speed range from <1 up to 8.7 m/s</li>
- Wind speed correlates less than solar irradiation between regions
- Correlations range between 0.11 [e.g. between Volyn and Zakarpattia] and 0.8 [e.g. between Poltava and Kirovohrad]
- Low correlation enables a balancing between regional wind power yields



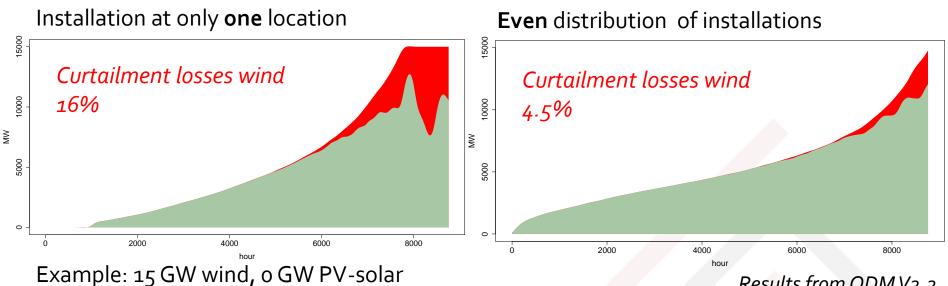
## 1.3 Examples for an optimal location selection

#### Target

- Minimizing the curtailment losses through location selection
- Increasing the stability of the whole power system
- Minimizing the aggregated electricity generation costs

### Constraints

- Installed capacity of wind and/or PV-solar
- Boundaries of conventional capacity electricity generation


#### Model

Optimal dispatch model, Version 2.2

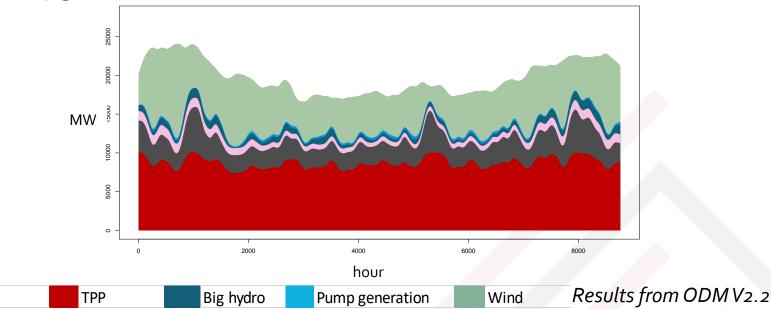




### 1.4 Examples for an optimal location selection



#### Results from ODM V2.2


| Indicator          | One location                  | Even distribution             | Difference            |
|--------------------|-------------------------------|-------------------------------|-----------------------|
| Installed capacity | Wind: 15 GW<br>PV-solar: o GW | Wind: 15 GW<br>PV-solar: o GW |                       |
| Utilized RES       | 39 TWh                        | 45 TWh                        | + 6 TWh               |
| GHG emission       | 44 Mt                         | 38 Mt                         | - 6 Mt                |
| Curtailment losses | 16.5 %                        | 4.5%                          | -12 percentage points |



NPP

### 1.5 Optimal location selection

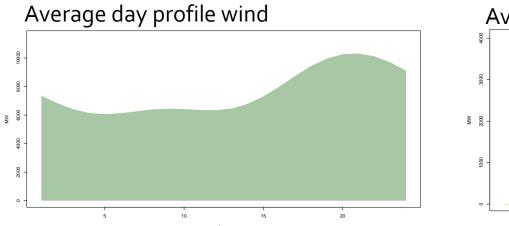
Electricity generation in 15 GW wind scenario – even distribution

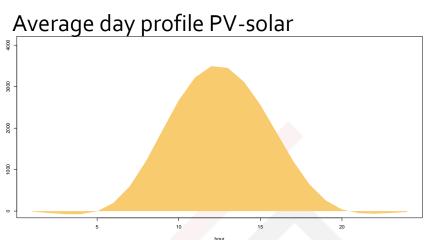


- An optimal location selection for wind (and solar) generation capacities increases the RES output, stabilizes the grid and reduces the need for other balancing options
- Optimal location will also have to take network topography into consideration [we plan to work on that]



### 2. Optimal wind-solar-mix


- CAPEX and OPEX of wind and solar differ
- Local value added of wind and solar differ
- Wind and solar power yields depend on fluctuating weather conditions
- Weather conditions solar irradiation and wind differ between regions
- Wind and solar day profiles typically differ




#### An optimal wind and solar mix helps reducing CAPEX and/or OPEX



## 2.1 Day profiles of wind and solar





• Average day profiles of wind and solar differ

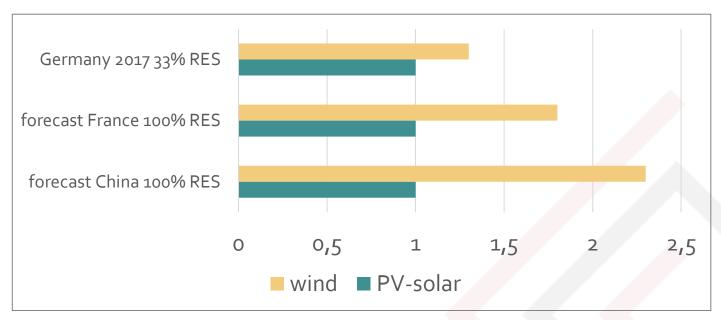
- PV-solar has the peak around noon, average wind profile is quite flat
- With appropriate forecast: solar capacities can be used for covering increasing demand in the middle of the day and wind capacities for supplementing base load of fossil fuels
- Wind and solar capacities can complement each other
- The "optimal" wind-solar-mix depends on several determinants



### 2.2 Determinants for an optimal wind-solar mix

#### • Technological determinants:

- Electricity demand profile
- Existing power plant park
- Availability of storage capacities and int'l trade
- Potential wind and solar yields
- Detailed profile of wind-speed and solar-radiation
- Economic determinants:
  - Relative CAPEX of wind and PV-solar installations


#### Further determinants:

- Long-term RES targets
- Various socio-economic and political targets



### 2.3 Examples from the literature

Wind-solar-mix (installed capacities), discussed in literature



- In literature optimal wind:solar mix is in the range between 1.8 : 1 and 1.3 : 1
- Defining an optimal mix for Ukraine requires a specification of the target system e.g.:
  - Reducing CAPEX and increasing macroeconomic gains
  - Increasing RES share and decreasing power system costs



## 2.4 Mathematic optimisation of Ukraine's wind-solar mix

#### Target

- Minimizing the CAPEX for the aggregate of wind and solar
- Increasing the stability of the whole power system
- Minimizing the aggregated electricity generation costs

### Constraints

- Installed capacity of wind and/or solar
- Boundaries of conventional capacity electricity generation

### Model

Optimal dispatch model, Version 2.3

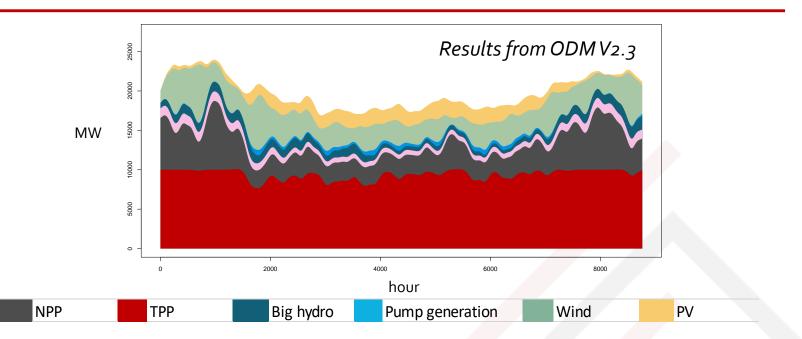




### 2.5 An example on optimising Ukraine's wind-solar mix



Wind-solar mix is sensitive with respect To the relative wind/PV CAPEX and the relation of capacity factors


Results from ODM V2.3

| Constraints and parameters |               |
|----------------------------|---------------|
| Electricity consumption    | 170 TWh       |
| RES share                  | 23%           |
| Capex wind*                | 1,500 Euro/kW |
| Capex PV-solar*            | 6oo Euro/kW   |

\* Fraunhofer 2017 for Germany



### 2.6 Optimal wind-solar-mix



- In our first approximation, the optimal wind-solar-mix in Ukraine would be in the order of 1:1.1
- Also in Ukraine a somewhat balanced mix of both technologies is advisable
- Further research is needed to get robust results on the optimal mix



Supported by:



Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the German Bundestag

#### Implemented by:



Project Leader Dr. Georg Zachmann zachmann@berlin-economics.com

Consultant Dr. Frank Meissner meissner@berlin-economics.com

Tel.: 030 2064 34 64 – 0