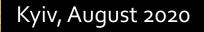


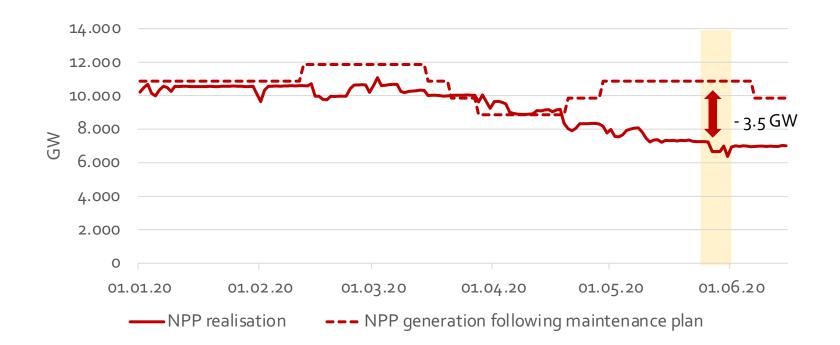
Supported by:



Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the German Bundestag

Was the dispatch of power plants in May 2020 optimal?


Dr. Frank Meissner, Clemens Stiewe, Oleksii Mykhailenko, Dr. Georg Zachmann

Actual nuclear generation vs. maintenance plan

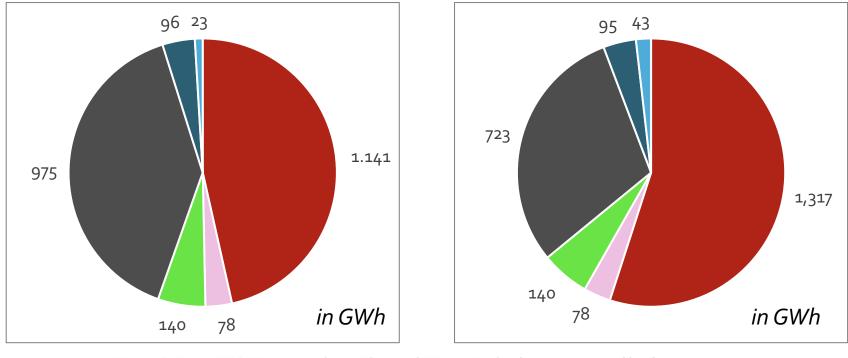
- NPP maintenance plan foreseen an upper nuclear power generation up to 3.5 GW higher than actual generation in the last week of May
- Balancing restrictions and low demand could partly explain lower NPP generation

Power plant dispatch was suboptimal

We compare the actual dispatch end of May with an economical optimal dispatch, derived with our Optimal Dispatch Model (ODM)*

- Compared to the optimal dispatch, actual nuclear load end of May was 15% too low
- This resulted in:
 - Increased CO₂ emissions by 250,000 t in only one week
 - 2. Increased operational cost by about UAH 150 m, i.e., 10% of operation cost

* See slide 12, Methodology



Electricity generation

Realisation vs. optimal schedule 25th-31th May 2020

Actual generation 25th-31th May 2020

Optimal dispatch 25th-31th May 2020

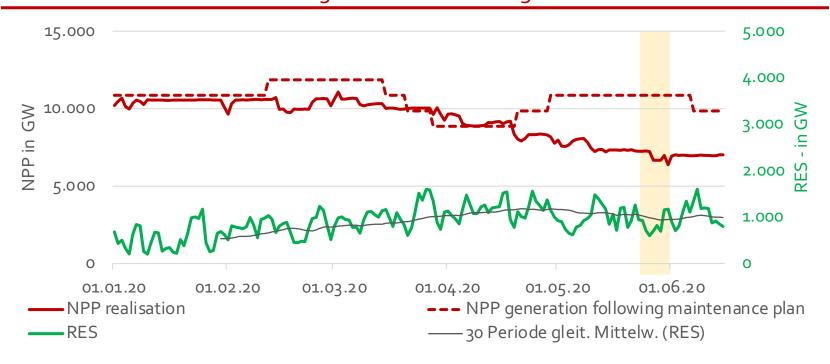
NPP = CHP = RES (PV + Wind) = Thermal PP = Big hydro = Pumped hydro (generation)

• Actual NPP generation was 15% lower than cost-optimal NPP generation

Low nuclear output cannot be explained by "Covid" Weekly peak demand 2019/20 vs. NPP deviation

.ow Carbon

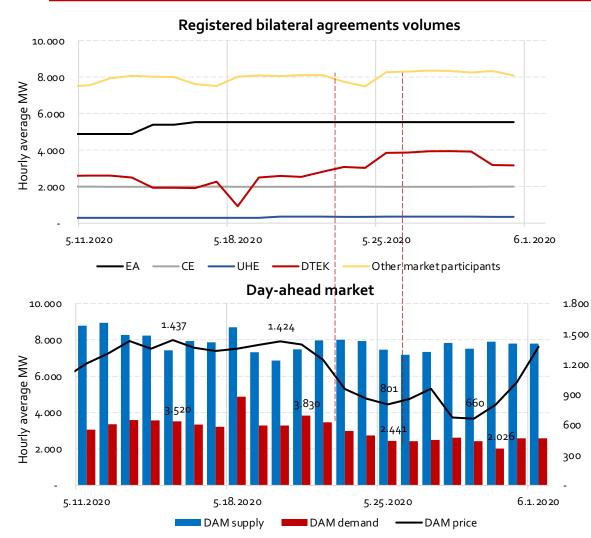
Jkraine



- Covid-related demand reduction was steadily between 6-11% since February 2020
- NPP generation decrease only kicked-in in April and **overshot peak demand decrease** by up to 3,000 MW

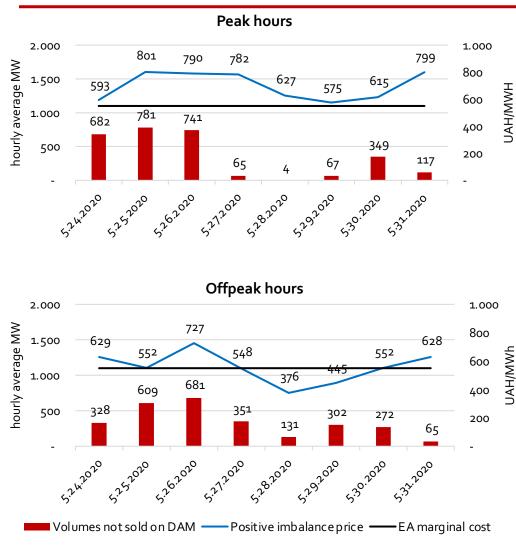
Low nuclear output cannot be explained by "RES surge": NPP maintenance schedule vs. generation and RES generation

ow Carbon


Jkraine

- RES (wind and solar) generation increased form January steadily on
- RES generation range 400 900 MW until first week of March and 1,000 -1,200 MW until first week of June
- ODM modelling results show that thermal generation was higher than necessary to provide spinning reserves for RES fluctuations

Market developments affected the NPP output decision



- During last two weeks of May DAM experienced <50% drop in price
- This resulted from demand shift from DAM to bilateral agreements
- Meanwhile DAM supply and consumption remained relatively stable
- DTEK generation companies were the sources of additional supply on bilaterals
- No other player has significantly changed their offers
 - At the same time, Energoatom cannot offer more on bilaterals, as it is limited by PSO obligations

Sources: Market operator, Ukrnenergo, UEEX data, LCU calculations

NPP output decrease was a response to market prices

- Energoatom, being limited by their administrative obligations, was incurring additional positive imbalances – mostly during off-peak hours
- As soon as the imbalance price reaches the level of marginal costs, EA sells power at a loss
- In order to maximise the profit, EA decided voluntarily to decrease their output for ~600 MW starting from 27/5/20 – thus decreasing their exposure to imbalances

Conclusion

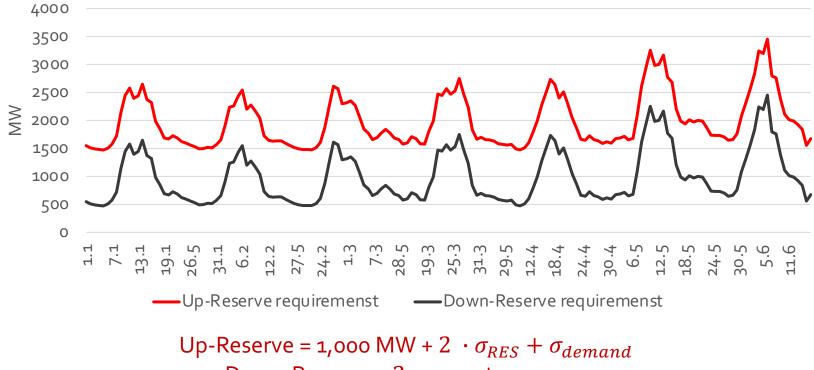
- Observed decrease in nuclear generation is not justified by economics, demand development or RES deployment
- Ukrenergo's balancing restricition for NPP at 7,220-7,600 MW in May 2020 was lower than extimated optimal 7,840 MW.
- Energoatom's decision to decrease the output to 6,700 MW during May 25-31 was dictated by market design inefficiency
- The result is higher generation from more expensive and polluting coalfired plants and increased total cost of electricity generation
- The drawbacks of market rules design, namely system of price caps, link between DAM and Balancing market, as well as PSO design, give advantage to privately-owned generators over strictly regulated stateowned Energoatom
- The players with significant market power, both on supply and demand side, must be regulated and their market power addressed

Appendix

Supplemental material

NPP maintenance schedule 25th-31th of May 2020

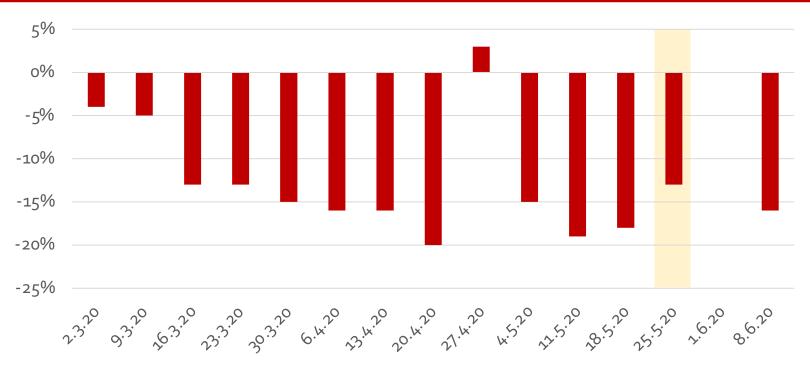
- The initial outage and maintenance plan for nuclear capacities had foreseen that following units are in maintenance mode end of May 2020:
 - Zaporizhzhya NPP unit 4 (1,000 GW)
 - Zaporizhzhya NPP unit 5 (1,000 GW)
 - South-Ukrainian NPP (unit 2) (1,000 GW)
- Following this plan, ca. 11,8GW of nuclear units have had to be in operation end of May 2020
- The total generation within 7 days would have sum up to ca. 2,000 GWh
- However, realisation of NPP sum up to only 1,480 GWh



Methodology

- We compare an optimal generation schedule with the realisation of generation for the last week of May 2020
- We derive the NPP, TPP, big hydro and pump generation trajectories by utilization of our Optimal Dispatch Model
- We consider CHP and RES generation, demand and trade trajectories as exogeneous
- We derive reserve requirements through a probabilistic consideration of forecast errors
- We consider a high forecast error for RES generation with a standard deviation of relative forecast errors of 50% and a confidence interval of 98%
- This assumption implies a conservative reserve provision that covers close to 100% of deviations of RES generation from forecasts

Reserve requirements: Optimal schedule 25th-31th May 2020



Down-Reserve = $2 \cdot \sigma_{RES} + \sigma_{demand}$

Standard deviation RES generation = 50% Standard deviation demand = 2% Confidence Interval = 98%

Temperature adjusted demand decrease compared to 2019

Source: Bruegel

- According to Bruegel electricity tracker, temperature adjusted peak demand in 2020 decrease up to 20% compared to same week of 2019 due to Covid-19 crisis
- Demand decrease less pronounced in last week of May

Supported by:

*

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the German Bundestag

Implemented by:

BerlinEconomics

Project Leader Dr. Georg Zachmann zachmann@berlin-economics.com

Project Manager Ina Rumiantseva rumiantseva@berlin-economics.com

<u>www.lowcarbonukraine.com</u> Tel.: 030 2064 34 64 – 0