
Supported by

Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection

Based on a decision of the German Bundestag

Ukraine's power plant park: Optimal configuration in 2032 and investment needs in the transition phase

Manuel von Mettenheim, Rouven Stubbe, David Saha

Structure

Policy context & Objective

Part I: Optimal power plant park in 2032

- 1. Analytical approach
- 2. Implication of decarbonisation for TPP investments
- 3. Scenarios for the power plant park in 2032
 - 3.1 Installed capacity
 - 3.2 Generation shares & Emissions
 - 3.3 Total system costs
 - 3.4 Comparison with Ukrenergo Target scenario

Part II: Investment needs in transition phase

- 4. Implications of IED/NERP process
- 5. Outlining feasible transition paths
- 6. Investment needs

Summary & Policy implications

Bibliography & Annexes

Policy context & Objective

Policy context:

Updated NDC

- -65% of GHG emissions by 2030 (compared to 1990 levels)
- Bulk of emissions reduction in power sector to compensate for growing industry sector

National Emission Reduction Plan (NERP)

• EU Directives require expensive retrofitting or decommissioning of TPPs

Post Coal Alliance

• COP26: coal phase-out by 2035/2040

Objective:

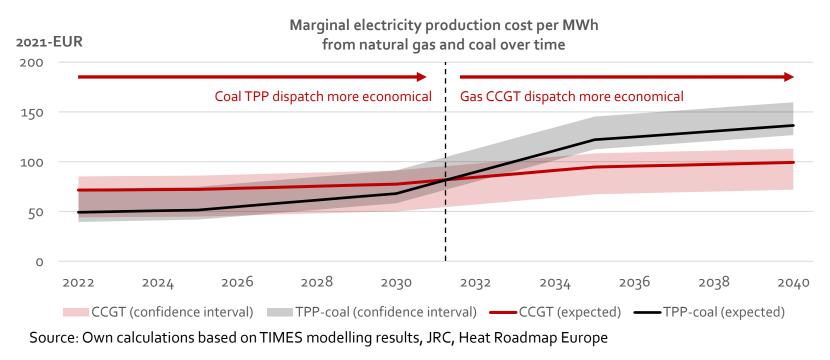
- Find optimal power plant park in 2032, consistent with
 (a) cost-efficient implementation of Updated NDC and (b) IED/NERP process
- > Outline a feasible transition path & estimate investment needs

Part I: Optimal power plant park in 2032

1. Analytical approach

Preparatory work

- Deriving policy constraints for model-based optimisation: Efficient NDC implementation (using CO₂ shadow price trajectory) implies a complete coal phase-out for electricity generation until 2032
- 2. Defining of current policies scenario and model-based optimisation of target scenario


Modelling approach for each scenario

- 3. Modelling **optimal dispatch** to derive the minimum variable cost usage for 2032 (Optimal Dispatch Model)
- 4. Deterministically verifying adequacy (Reserve margin approach)
- 5. Calculating total system costs (Power Sector Financial Model)
- 6. Comparing scenarios regarding investment needs and annual system costs

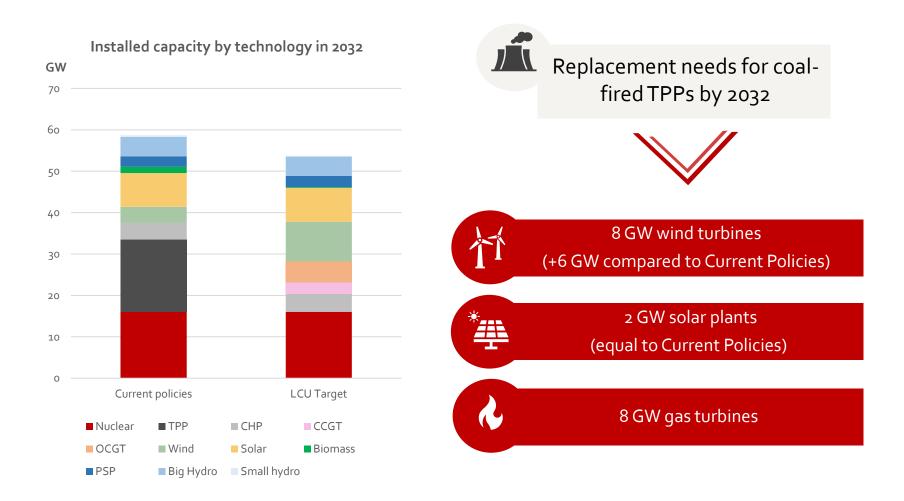
2. Implication of decarbonisation for TPP investments

 Efficient NDC implementation (using CO₂ shadow price trajectory) implies that renewables & gas turbine generation should replace TPP generation by 2032 (details in Annex II & III).

Comparison of annual Capex per kW for new CCGT and existing TPP (Annex IV)

EUR 143 < EUR 173-622

- Investment in existing TPP (filter and lifetime extension) cannot be amortised before shutdown in 2032
- This implies a complete coal phase-out for electricity generation until 2032.



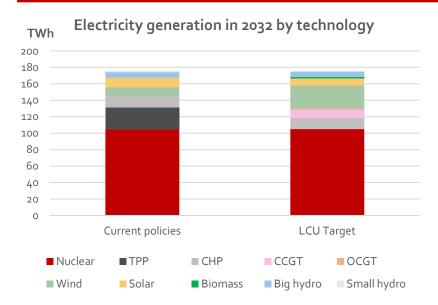
3. Scenarios for the power plant park in 2032

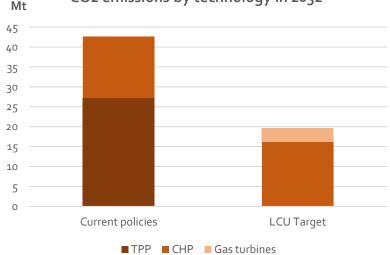
	Current policies scenario	LCU Target scenario
TPP capacity	Current NERP: units are either retrofitted (lifetime extension + filter) or decommissioned and (partly) replaced	 no retrofits no replacements with coal-fired generation move all TPPs in Annex III (filter retrofit) to Annex IV A2 (40k hours limit)
Nuclear capacity	Khmelnytskyi NPP units 5 ar	nd 6 (2.2 GW) are newly built
Renewable capacity (excl. hydro)	Increase follows preliminary auction volumes by MinEnergo	RES capacities are optimized
Gas turbines	-	Gas turbines are optimized

3.1 Installed capacity

Supply, storage & demand side flexibility options

Major challenge in Ukrainian electricity system


Introduce more flexibility in electricity system to combine high share of nuclear baseload generation & growing share of variable RES


	Technology	Flexibility	Advantage	Disadvantage	Considered in model	
	CCGT	mid-term	High efficiency	High O&M costs	Yes	
Supply	OCGT	short- & mid-term	Relatively low Capex	High variable cost	Yes	
side	ICE	short- & mid-term	Relatively low Capex	High variable cost	No, but ICE and OCGT are quite similar	
	Biogas + storage	short- & mid-term	Already mature low-carbon technology	High Capex	Not as flexible option	
	Battery	short-term	High flexibility	High variation in cost projections	Yes	
Storage	PSP	short-term (mainly)	Mature technology, often cost-effective	Constrained by location of suitable sites	Yes, but fixed capacity	
	Power-to-gas	long-term	Option for seasonal storage	Not mature technology, very high variable costs	No	
Demand side	Demand side management	short- & mid-term	Low-cost option, fuel saving	Retail consumers: Tariffs & appliances not in place*	No (uncertainty in size of demand flexibility)	

*Need for smart meters & flexible tariffs to induce retail consumer demand side flexibility (industrial demand side management already possible)

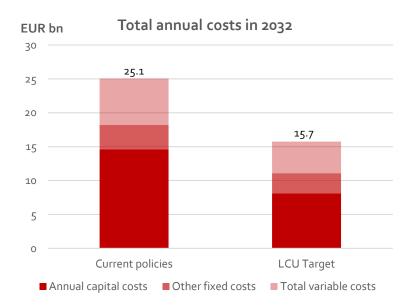
3.2 Generation shares & Emissions

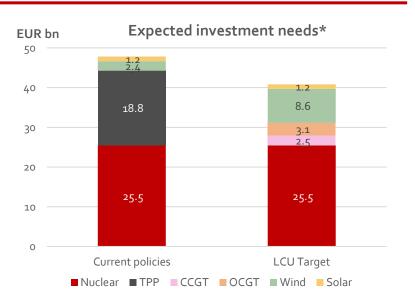
CO2 emissions by technology in 2032

Gas turbines

- Provide needed balancing capacity and backup (7% of total generation)
- Gas consumption increases to 2.1 bcm annually (≈ 7% of current total gas consumption)

Wind and solar

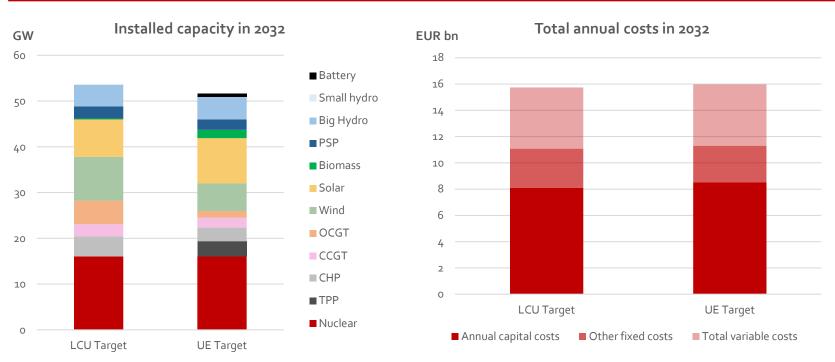

 Significant increase in Target scenario covering 21% of total generation


Emissions

- **Sharp decline** in emissions to around 20 Mt in Target scenario
- Gas-fired electricity generation from OCGT and CCGT accounts for 18% of total emissions

3.3 Total system costs

- Annual capital costs of Current Policies scenario exceed Target scenario due to retrofit and replacement investment for TPPs
- Variable costs lower in Target scenario due to **high share of RES** generation


*for selected technologies since investment in Hydro, CHP, and biogas do not change across scenarios

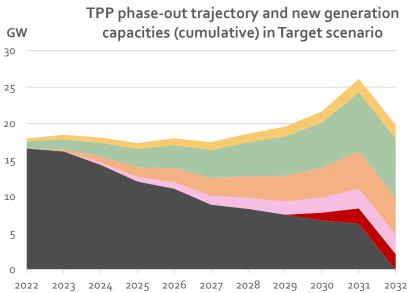
Note: We consider greenfield, lifetime extension and filter investment.

- High investment needs in Current Policies scenario due to retrofit and replacement investment for TPPs
- Target scenario still requires high investment for **new nuclear units** and in extending the lifetime of about half of the current units

3.4 Comparison with Ukrenergo Target scenario

- The composition of generation technologies are quite similar in both scenarios
- In Ukrenergo Target scenario, 3.3 GW of TPPs remain in system until 2032
 - Due to differing assumptions, some TPPs might still be economical in 2032
- Capacity of **solar and wind** is higher in LCU Target scenario
 - 18 GW vs. 16 GW (Ukrenergo)

Part II: Investment needs in transition phase



4. IED/NERP process has major implications for transition phase

(Current policies	LCU Target scenario						
	'							
NERP	12.6 GW	-						
TPPs that will receive SC	D_{z},NO_{x} and/or dust filter and are not for	reseen for closure						
20k hours (2023)	0.9 GW	o.9 GW						
•	llowed to operate 20,000 hours betwee urrent policies: replacement with new o							
🧎 40k hours (2033)	3.3 GW	15.9 GW						
•	llowed to operate 40,000 hours betwee urrent policies: replacement with new o							
f 40k hours (2033)	5.4 GW	5.4 GW						
	out: TPPs that are allowed to operate 40 033 and are then decommissioned	o,000 hours between 2018 and						
Mew wind and solar	3 GW	10 GW						
Cumulative construction	Cumulative construction of new wind & solar PV foreseen for 2022-2030 (commissioned in 2032)							
New gas turbines	-	8 GW						
Cumulative construction of OCGT & CCGT foreseen for 2022-2030 (commissioned in 2032)								

5. Outlining feasible transition path

■ TPP ■ New nuclear ■ New CCGT ■ New OCGT ■ New wind ■ New solar

- Timing of new investment is determined by exhaustion of TPP **operating hour limits**
- On average 1.1 GW of TPPs will have to stop operation every year until 2031
 - 2031: 6 GW of TPPs will close
- Construction of new RES & gas turbines must be tackled quickly (construction time: ~2 years)

■ New nuclear ■ New CCGT ■ New OCGT ■ New wind ■ New solar Note: we assume investment two years before plant is commissioned except for nuclear investment which is evenly distributed from today

- EUR 1.2 1.8 bn annual investment into new RES & gas turbine construction in this decade
- Additionally, **EUR 1.7 bn** p.a. needed for construction of Khmelnytskyi units 5 and 6
- Investments should start quickly to ensure security of supply in the transition phase
- RES auctions could be scaled up over time (with a steep path) 1

Summary & Policy Implications

	NDC		TPP phase-out until ~2032]					
Analysis	IED/NERP		Current NERP unviable, retrofits uneconomical						
	ILD/INLKI		Operating hour limits: TPP capacity ↓ from 2024						
	Revise NERP	no	retrofits, no replacements, move all TPPs to Annex IV A2 (40k hours limit)						
		around EUR 3.2 bn per year (EUR 29 bn until 2030)							
Policy	Investment	RES	8 GW wind 2 GW solar						
Implications	needs	Gas8 GW CCGT & OCGTturbines(should be H2-ready)							
		NPP Strategic decision: the construction of two new Westinghouse nuclear reactors (2.2 GW) already decide							
	Further assessment needed	СНР	Beyond the scope of this work, see Annex VI						

Supported by

Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection

Based on a decision of the German Bundestag

Implemented by: **Berlin Berlin Economics**

Head of Energy and Climate David Saha saha@berlin-economics.com Project Manager Denis Kletzel kletzel@berlin-economics.com

www.lowcarbonukraine.com

Tel.: 030 2064 34 64 - 0

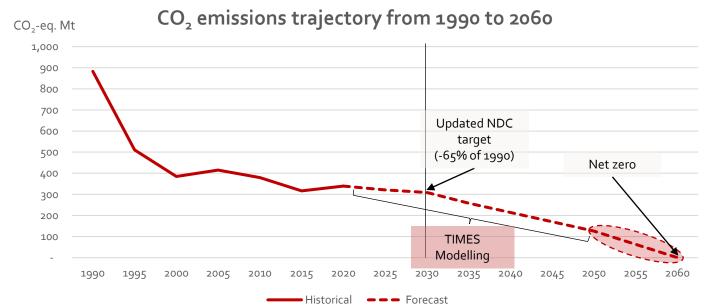
Bibliography

- Cole & Frazier (2019): Cost Projections for Utility-Scale Battery Storage, National Renewable Energy Laboratory
- DIW (2013): Current and Prospective Costs of Electricity Generation until 2050, data documentation
- Heat Roadmap Europe (2017): EU28 fuel prices for 2015, 2030 and 2050, <u>https://heatroadmap.eu/wp-content/uploads/2020/01/HRE4_D6.1-</u> <u>Future-fuel-price-review.pdf</u>
- IEA (2020): Techno-economic inputs, <u>https://www.iea.org/reports/world-energy-model/techno-economic-inputs</u>
- JRC (2019): Power generation technology assumptions, POTEnCIA Central-2018 scenario, <u>https://data.jrc.ec.europa.eu/dataset/3182c195-a1fc-46cf-8e7d-44063d9483d8</u>

Annex overview & analytical approach (detailed)

Defining a least-cost, adequate power plant park compatible with Ukraine's decarbonisation targets

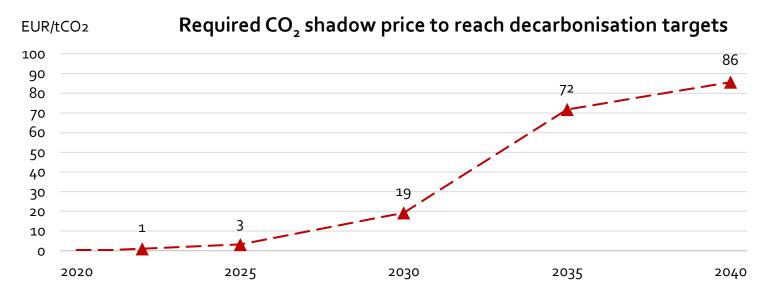
- Minimising total system costs, i.e.
 - Variable cost (fuel cost, CO₂ price, variable O&M)
 - Fixed cost (annuity for capital expenditure, fixed O&M)
 - Cost assumptions mainly based on JRC, IEA, HeatRoadmap Europe and own calculations (Annex I)
 - CO₂ shadow price and amortisation periods for coal power plant retrofits based on TIMES modelling (Annex II) and own calculations (Annex III, IV)
- Least-cost NDC implementation requires an increasing cross-sectoral CO₂ price (see Annex II)
 - Determined with technoeconomic energy modelling (TIMES)
 - Affects assumptions for power-sector modelling (Optimal Dispatch Model & Power Sector Financial Model)


Annex I: Table of relevant assumptions

Type of cost	Technology/fuel	Unit	Value	Source
	Coal	EUR/MWh	15	Heat Roadmap Europe (2017)
Fuel costs	Natural gas	EUR/MWh	42	Heat Roadmap Europe (2017)
FUELCOSIS	Biomass	EUR/MWh	26	Heat Roadmap Europe (2017)
	Nuclear	EUR/MWh	2	Ukrenergo
	All technologies, incl.			JRC (2019)
	OCGT	EUR/kW	610	JRC (2019)
	CCGT	EUR/kW	933	JRC (2019)
Capex for greenfield	TPP	EUR/kW	1,772	JRC (2019)
Capex for greenned	Wind	EUR/kW	1,070	JRC (2019)
	Solar	EUR/kW	614	JRC (2019)
	Biogas (FBC)	EUR/kW	2,950	JRC (2019)
	and others*	EUR/kW	-	JRC (2019)
Capex lifetime extension	All technologies	EUR/kW	<i>Capex</i> * 25%	JRC (2019), DIW (2013)
Fix O&M	All technologies *	EUR/kW	-	JRC (2019)
Variable O&M	All technologies	EUR/kWh	-	JRC (2019)
	SO2	EUR/kW	97	Badyda et al. (2016)
Conovifiltor	Nox	EUR/kW	60	Badyda et al. (2016)
Capex filter	Dust	EUR/kW	60	Badyda et al. (2016)
	Other	EUR/kW	11	Badyda et al. (2016)
	SO2	EUR/kW	4.1	Badyda et al. (2016)
Fix O&M filter	Nox	EUR/kW	0.3	Badyda et al. (2016)
	Dust	EUR/kW	0.4	Badyda et al. (2016)
	Other	EUR/kW	0.4	Badyda et al. (2016)

* Capex of battery is obtained from IEA (2020); fix O&M of battery is obtained from Cole & Frazier (2019)

Annex II (a): Modelling Ukraine's decarbonisation goals


Source: own illustration based on Ministry of Energy and Environmental Protection of Ukraine (2020), Updated NDC, National Economic Strategy until 2030, TIMES modelling results; Note: non-CO₂ emissions are included in this graph

CO₂ emissions reduction development

- 1990-2000: sharp decline in CO₂ emissions due to economic downturn
- Since 2015: upward trend of emissions
- 2020-2030: slight reduction of CO₂ emissions to reach updated NDC target (-65% of 1990)
- 2030-2040: Emissions reduction accelerates
- 2040-2060: Further acceleration average annual reduction to reach climate neutrality in 2060

Annex II (b): CO₂ shadow price trajectory for a least-cost NDC implementation

Source: TIMES modelling results, European Commission, Ember, Ariadne Project, Refinitiv, S&P; *constant 2021 prices

- 2030 required CO₂ shadow price similar to expected CO₂ price in China by 2030 and significantly lower than in the EU (55-190 EUR/tCO₂)
- Relatively steep increase required between 2030 and 2035
- For smoother CO₂ shadow price path until 2035, path until 2030 could be made more ambitious, e.g. up to 35 EUR/tCO₂ by 2030

Annex III (a): Climate goals & required CO₂ shadow price path shortens amortisation periods for required coal TPP retrofits

- Required retrofits
 - Lifetime extension: All existing TPPs were built before 1989 (except two TPP units currently under construction) so that investments in lifetime extension are necessary
 - NERP: Large-scale required investments in filters for SO₂, NO_x and dust
- Coal power plants face a limited economically useful lifetime
 - Ukraine's climate goals and commitments (2030 Updated NDC, 2060 climate neutrality) requires an increasing CO₂ shadow price path for a least-cost implementation of these targets (see previous Annex II)
 - Beyond a carbon price of ca. 33 EUR/tCO₂ (see calculations on next pages), coal TPPs fall behind combined-cycle gas turbines (CCGT) in the dispatch merit order and are thus less economical than gas power plants
 - From a dynamic least-cost perspective*, at the year this CO₂ shadow price is reached, coal TPPs should be replaced with modern gas power plants (and RES which has near-zero marginal costs and rapidly falling capital investment costs)

^{*} Since the carbon price would have to increase further in the following years, making coal TPPs even less economical from that point onwards.

Annex III (b): Determining the merit order switch between coal & gas

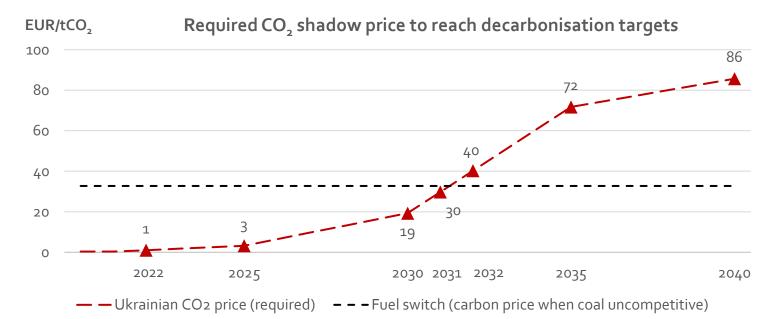
At what CO₂ shadow price (and thus, in what year) will coal units (TPP) and natural gas units (CCGT*) switch their positions in the dispatch merit order, as marginal electricity production costs of coal-TPP surpass CCGT?

We calculate marginal electricity production costs for both technologies under different fuel price scenarios and CO₂ shadow prices (see graph on following page)


Technology and fuel price scenario		Fuel price (2021-EUR/MWh**)	Efficiency	Variable O&M (2021-EUR/MWh**)	CO₂ content (tCO₂/MWh**)	
TOD	cheap coal	11.8				
TPP (coal)	projected coal	15	0.33	2.6	0.34	
(cour)	expensive coal	22.7				
CCCT	cheap gas	25.3			0.2	
CCGT (natural gas)	projected gas	42	0.61	2.2		
(nacoral gas)	expensive gas	50.4				

* as the comparable technology for a load-following generation technology

 $**CO_{_2}$ content and fuel price is per MWh-thermal, variable O&M is per MWh electric Source: JRC, Heat Roadmap Europe


Annex III (b): Determining the merit order switch between coal & gas

Source : Own calculations based on TIMES modelling results, JRC, Heat Roadmap Europe

Annex III (b): Determining the merit order switch between coal & gas

Source: TIMES modelling results, European Commission, Ember, Ariadne Project, Refinitiv, S&P; *constant 2021 prices

- Coal TPPs are expected to be uneconomical after 2031/2032
- Annuity for retrofits (lifetime extension & filters) for coal TPPs needs to be calculated for a shortened amortisation period (from the year of retrofit until incl. 2031)

Annex IV (a): Overview of Ukrainian TPPs

Status of TPP units		Capacity in GW	Units	Average age in years	Description
NERP –	Annex III	12.6	47	52	TPPs receive SO2, NOx and/or dust filter
	20,000 hours until 2023	0.9	5	55	Between 2018 and end-2023, TPPs are allowed to operate 20,000 hours and are then decommissioned and replaced with coal-fired generation
Opt-out (Annex IV A1, A2 and B)	40,000 hours until 2033	3.3	13	55	Between 2018 and end-2033, TPPs are allowed to operate 40,000 hours and are then decommissioned and replaced with coal-fired generation
	40,000 hours until 2033 (gas- fired TPPs)*	5.4	8	46	Between 2018 and end-2033, TPPs are allowed to operate 40,000 hours and are then decommissioned
New TPP units**		0.7	2	0	TPPs are currently being built
Total		22.9	75		

* Gas-fired TPP were rarely in operation in previous years

** Slovyansk TPP 6a and b completed by 2023/2024

Power plant	Unit	Status	Capacity in MW	Capex in EUR m	Capex annuity In EUR m	Annuity per kW in EUR
CCGT	-	Greenfield	100	93.3	14.2	142
OCGT	-	Greenfield	100	61.0	9.4	94
	5	Unknwon	100			
	6	Unknown	100			
Dobrotvorska TPP	7	NERP	150	100.5	38.1	254
	8	NERP	160	107.2	39.1	248
	1	NERP	300	201.1	85.0	283
	2	NERP	300	201.1	81.3	271
Ladyzhynska TPP	3	NERP	300	201.1	100.1	334
Lauyznyńska i r r	4	NERP	300	201.1	76.2	254
	5	NERP	300	201.1	76.2	254
	6	NERP	300	201.1	76.2	254
Trypilska TPP	1	NERP	300	201.1	88.1	294
	2	NERP	325	217.8	102.9	317
	3	NERP	300	201.1	95.0	317

Power plant	Unit	Status	Capacity in MW	Capex in EUR m	Capex annuity In EUR m	Annuity per kW in EUR
	4	NERP	300	201	76	254
Trypilska TPP	5	40k hours 2033 (gas)	300	-	-	-
	6	40k hours 2033 (gas)	300	-	-	-
	3	NERP	200	134	55	274
	4	NERP	210	141	53	254
	5	40k hours 2033	222	393	172	776
Kurakhivska	6	40k hours 2033	225	399	175	776
	7	40k hours 2033	225	399	175	776
	8	NERP	225	116	48	213
	9	NERP	225	151	56	248
	9	NERP	200	134	52	264
	10	NERP	210	141	62	294
	11	NERP	200	115	46	228
Luganska TPP	12	Offline	175	-	-	_
	13	NERP	210	108	45	213
	14	NERP	200	134	51	254

Power plant	Unit	Status	Capacity in MW	Capex in EUR m	Capex annuity In EUR m	Annuity per kW in EUR
	15	NERP	200	115	46	228
Luganska TPP	TEG 4	Offline	100	-	-	-
	3	Unknown	80			
	4	Offline	80	-	-	-
Slovyanska TPP	7	NERP	720	483	183	254
	6a	Greenfield	330	585	130	395
	6b	Greenfield	330	585	141	426
	1	NERP	300	201	95	317
	2	NERP	300	201	95	317
	3	NERP	300	201	84	279
Vuhlehirska TPP	4	NERP	300	201	78	258
	5	40k hours 2033 (gas)	800	-	_	-
	6	40k hours 2033 (gas)	800	-	_	-
	7	40k hours 2033 (gas)	800	-	-	_

Power plant	Unit	Status	Capacity in MW	Capex in EUR m	Capex annuity In EUR m	Annuity per kW in EUR
	1	NERP	175	117	55	317
	2	NERP	175	117	56	320
	3	40k hours 2033	180	319	140	776
	4	40k hours 2033	180	319	140	776
	5	40k hours 2033	190	337	147	776
Zmiyivska TPP	6	40k hours 2033	185	328	144	776
	7	NERP	290	194	82	283
	8	NERP	325	218	108	334
	9	NERP	280	188	91	325
	10	NERP	290	194	96	330
	1	NERP	315	211	83	263
	2	40k hours 2033	300	532	233	776
	3	NERP	300	201	92	306
Kryvorizka TPP	4	NERP	300	201	76	254
	5	40k hours 2033	282	500	219	776
	6	Offline	282	-	-	-

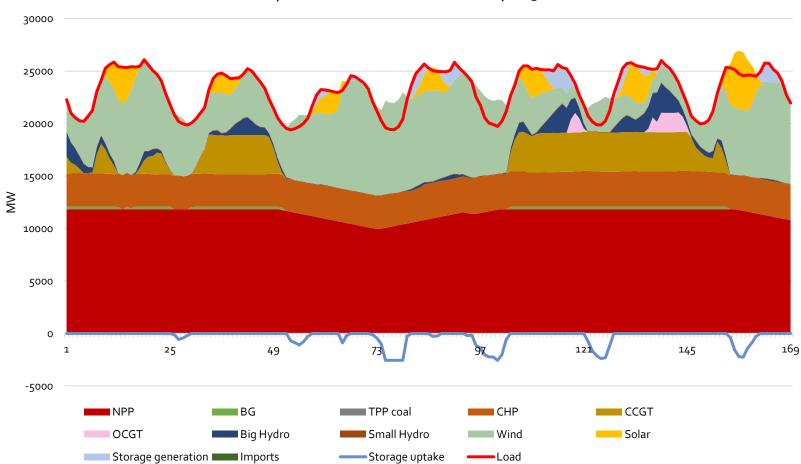
Power plant	Unit	Status	Capacity in MW	Capex in EUR m	Capex annuity In EUR m	Annuity per kW in EUR
	7	Offline	282	-	-	-
	8	40k hours 2033	282	500	219	776
Kryvorizka TPP	9	Offline	282	-	-	-
	10	NERP	300	201	79	262
	7	40k hours 2033	150	266	116	776
	8	40k hours 2033	150	266	116	776
	9	40k hours 2033	150	266	116	776
Prydniprovksa TPP	10	40k hours 2033	150	266	116	776
FIYUIIIPIOVKSATEP	11	NERP	310	208	81	262
	12	Offline	285	-	-	-
	13	Offline	285	-	-	-
	14	Offline	285	-	-	-
	1	NERP	325	198	79	244
	2	NERP	300	201	76	254
Zaporizka TPP	3	NERP	325	218	85	261
	4	NERP	300	201	76	254

Power plant	Unit	Status	Capacity in MW	Capex in EUR m	Capex annuity In EUR m	Annuity per kW in EUR
Zaporizka TPP	5	40k hours 2033 (gas)	800	-	-	-
	6	40k hours 2033 (gas)	800	-	-	-
	7	40k hours 2033 (gas)	800	-	-	-
Burshtynska TPP	1	20k hours 2023	195	345	151	776
	2	20k hours 2023	185	328	143	776
	3	20k hours 2023	185	328	143	776
	4	20k hours 2023	195	346	151	776
	5	40k hours 2033	215	381	166	776
	6	20k hours 2023	195	346	151	776
	7	40k hours 2033	206	365	159	776
	8	NERP	195	131	51	262
	9	NERP	195	131	49	254
	10	NERP	210	141	52	249
	11	NERP	195	131	53	274
	12	NERP	195	131	60	254

Annex V: Installed capacity (table)

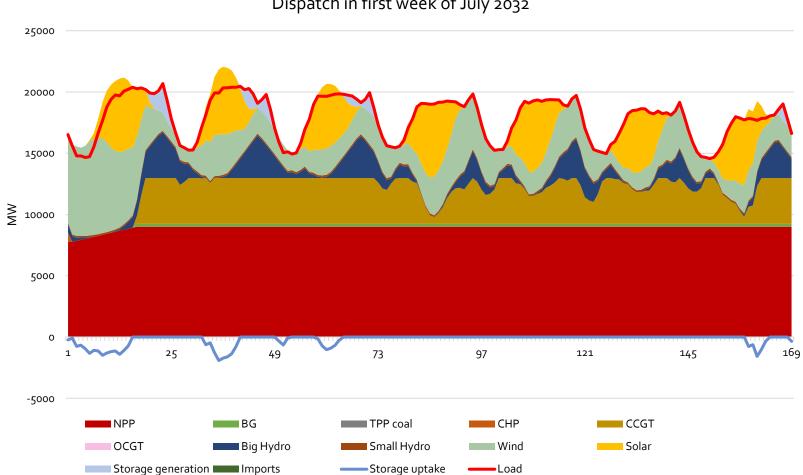
in MW	2021	Current policies	LCU Target (nuclear)	UE Baseline	UE Target	SAEE RES strategy until 2030
Nuclear	13,835	16,055	16,055	16,055	16,055	
ТРР	21,842	7,500	-	3,130	3,280	
OCGT	-	-	5,141	150	1,450	1350
ССБТ	-	-	2,701	-	2,200	
Biofuel	200	1,500	212	820	1,817	1,500
Wind	1,529	3,778	9,554	4,900	6,000	4,700 (onshore), 300 (offshore)
Solar	6,283	8,173	8,173	6,300	9,894	7,000
Big Hydro (dams)	4,663	4,663	4,663	4,952	4,952	
Small hydro	364	366	182			
СНР	4,059	4,059	4,367	3,000	3,000	
PSP	1,488	2,562	2,660	2,287	2,287	
Battery	-	-	-	214	740	640

Annex VI: Considerations for heat sector

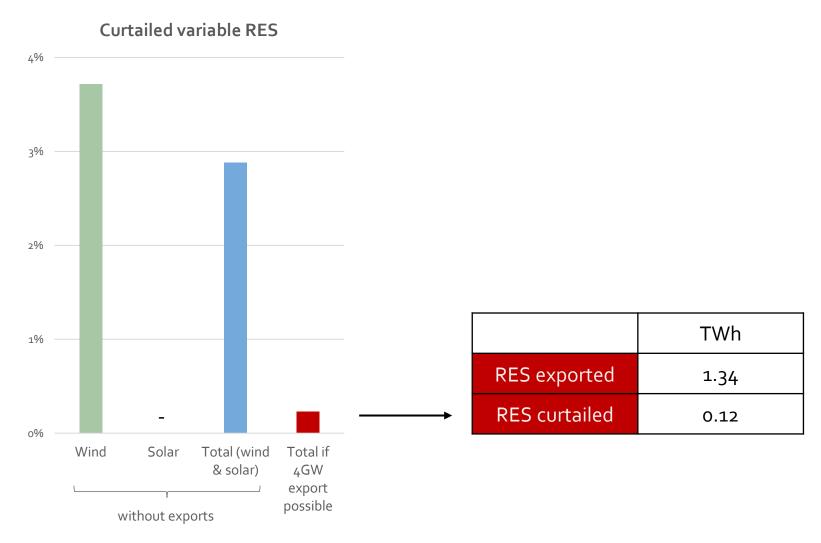

Decarbonising the electricity sector directly affects the heat sector

- Around 4.4 GW of installed capacity provides heat
 - 4.1 GW CHP capacity no change in our calculations (exogenously included)
 - 2.8 GW TPP capacity (supplying waste heat to satellite cities) are phased out by 2032 at the latest
- As TPPs supplying heat to satellite cities are phased out starting in 2024 (see graph below) they should be **urgently replaced** with new modern heat plants, e.g. new CHP
 - Since TPPs are oversized for heat supply, o.3 GW new CHPs are enough to replace heat provision for satellite cities
 - We assume o.3 GW new gas CHPs, but could potentially build biomass CHPs instead
 - We also assume retrofits of the existing old CHP fleet, however, more analysis of CHP retrofits vs. replacement is needed
- Decarbonisation of the heat sector goes beyond the scope of this work, should be analysed in a separate study
 - Biomass and biogas CHP plants
 - Heat pumps (electrification)
 - Energy efficiency

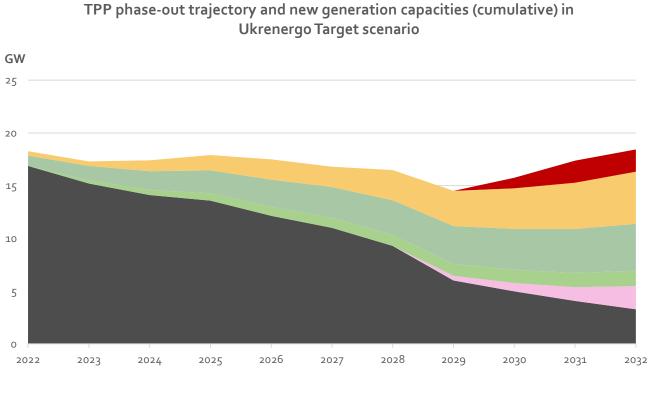
Last year of operation of TPP units supplying heat 2032 2030 2028 2026 2024 2022 2020 PrydripouskaTPR Labythynska IPP Kryvoitka TPP 4urakhin TPP Luhanst PP Vuheniska PP 2 minustra TPP BUSHUNTPP DobrowiskaTPP Slovi Vanska TPP Lapoititenva TPP THPIISKATPP


Annex VII (a): Dispatch – LCU Target Scenario (representative winter week)

Dispatch in first week of February 2032


Annex VII (b): Dispatch – LCU Target Scenario (representative summer week)

Dispatch in first week of July 2032



Annex VII (c): Curtailment – LCU Target Scenario

Annex VIII: TPP Phase-out trajectory in Ukrenergo Target scenario

TPP New CCGT New OCGT New wind New solar New nuclear